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As more and more structures of macromolecular complexes get
solved in different conditions, it has become apparent that flexibility
is an inherent part of their biological function. Normal mode analysis
using simplified models of proteins such as the elastic network model
has proved very effective in showing that many of the structural
transitions derived from a survey of the Protein Data Bank can be
explained by just a few of the lowest-frequency normal modes. In this
work, normal modes are used to carry out medium- or low-resolution
structural refinement, enforcing collective and large-amplitude move-
ments that are beyond the reach of existing methods. Refinement is
carried out in reciprocal space with respect to the normal mode
amplitudes, by using standard conjugate-gradient minimization. Sev-
eral tests on synthetic diffraction data whose mode concentration
follows the one of real movements observed in the Protein Data Bank
have shown that the radius of convergence is larger than the one of
rigid-body refinement. Tests with experimental diffraction data for
the same protein in different environments also led to refined
structural models showing drastic reduction of the rms deviation with
the target model. Because the structural transition is described by
very few parameters, over-fitting of real experimental data is easily
detected by using a cross-validation test. The method has also been
applied to the refinement of atomic models into molecular envelopes
and could readily be used to fit large macromolecular complex
rearrangements into cryo-electron microscopy-reconstructed images
as well as small-angle x-ray scattering-derived envelopes.

Understanding protein flexibility is a major challenge in
structure–function relationship studies that structural mo-

lecular biology addresses routinely through both computational
and experimental methods. Although normal modes analysis
(NMA) has been known for years to be applicable to proteins to
describe their movements (1–3), the method has recently enjoyed
renewed interest because of the emergence of simplified models
that proved easy to use and very effective in capturing the
dynamics of proteins (4) but also because more and more
structures of the same protein have been solved in different
conformational states, providing more test cases. In many cases,
it was observed that low-frequency normal modes are very good
at explaining collective large-amplitude motions of proteins
known in different conformational states (5). This result was
shown for instance in a number of proteins undergoing induced
fit upon ligand binding, particularly proteins existing in both a
closed and an open form (6, 7). Other studies involve hemoglobin
(8), but also large macromolecular complexes such as the
ribosome (9) and even an entire viral particle (10).

In an extensive survey using a database of protein movements
observed in protein structures deposited in the Protein Data
Bank (PDB), Gerstein and colleagues (5) showed that, in most
cases, a handful of the lowest-frequency modes deduced from
NMA and a simplified representation of proteins is sufficient to
explain the observed movements. This finding is based on the
so-called elastic network model of proteins first described by
Tirion (4) and then further developed independently by Hinsen

(11) and Bahar and colleagues (12, 13). Normal modes calcu-
lated with this method are able to describe faithfully the B-
factors (12, 14) in protein crystals. The obvious advantage of the
elastic model is that NMA is very rapid and also that, thanks to
the rotation–translation block (RTB) method recently devel-
oped by Sanejouand and colleagues (15), there is virtually no
limit in the size of the macromolecular assembly one can study.

However, in most of these studies, NMA is essentially a
‘‘postmortem’’ analysis, in the sense that both structures have to
be known before a tentative molecular explanation of the
biologically relevant movement(s) can be offered. For the time
being, the prediction of such movements from just one of the two
structures remains a risky exercise.

In this article, we propose to use NMA to refine a starting
structural model against experimental data such as medium- or
low-resolution x-ray diffraction data, electron microscopy-
reconstructed images of large macromolecular complexes or
molecular envelopes derived from small-angle x-ray scattering
data. We show that such a refinement procedure, using a very
small number of parameters (the normal mode amplitudes of
10–20 lowest-frequency modes), has a very large radius of
convergence. It is fast and robust, and its effectiveness can easily
be monitored by the combination of the two reciprocal-space
scores, Rwork and Rfree, that the community of crystallographers
are routinely using during refinement of atomic models (16).

This method has numerous applications. The first application
is in classical x-ray crystallography where it should supersede
rigid body refinement, being just a generalization of the latter
method. Indeed, it allows for global translations and rotations,
but also for the movement of domains, without the obligation for
the user to define subjective and somewhat arbitrary boundary
regions of the different movable domains. In this respect, it is
obvious that normal mode (NM) refinement could be used with
benefit to get a better starting model after running a molecular
replacement (MR) program, such as AMORE for instance (17), or
even to identify the correct solution. Because the success of MR
relies heavily on the ability to cope with large conformational
changes in the original model, we expect NM refinement to be
more useful than just rigid-body refinement, especially in the
context of structural genomics.

A second application is to deform, in a plausible manner, an
existing model into a known molecular envelope obtained either
through electron microscopy (EM) image reconstruction tech-
niques or small-angle x-ray scattering (SAXS) data. Indeed, EM
and SAXS often offer the possibility of getting a low resolution
image of the same macromolecular object in different conforma-
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tional states, for instance after binding one or several ligands. In this
case, NM refinement allows one to quickly gain detailed structural
insight into the deformations induced upon ligand binding.

Due to the low number of parameters being refined, the
method has a very favorable (no. of observations�no. of param-
eters) ratio that makes it very attractive when only a set of
low-resolution experimental constraints is available.

Crystallographic refinement using NMA has been attempted
before, especially in the pioneer papers of Kidera and Go (18)
and Diamond (19). However, both works involved only the
modeling of atomic (anharmonic) disorder through a better
estimation of the Debye–Waller B-factors by using normal
modes and made no attempt to refine the amplitudes of the
normal modes to carry out positional refinement.

The application of deformations along normal modes eigen-
vectors has been used before by Tirion et al. to fit fiber diffraction
data on F-actin (20), but it seems that this work has remained
isolated and was not pursued any further or applied to other
cases. Also, the refinement was performed through the solution
of the so-called normal equations and not with the conjugate-
gradient method (21).

Materials and Methods
The Model. To calculate the normal modes, the protein structure is
approximated by a three-dimensional elastic network, where each
residue in the protein is reduced to one point (usually the C-alpha).
Each point is linked to its neighbors in space by springs of the same
strength C, which sets the energy scale (4–6, 11–15). There is only
one parameter in this simple model, namely the cutoff Rc used to
define neighbors in the structure. Here, we take Rc � 10 Å. The
potential the protein is experiencing can be written as:

E � C�2�a,bH�Rc � �rab
0 ���rab � rab

0 �2 . [1]

Here, rab is the distance between two atoms a and b whereas rab
0

is their distance in the reference state. C is a constant as in the
original Tirion model (4). The sum is restricted through the
Heaviside function H to ‘‘interacting’’ atoms, i.e., if rab

0 � Rc. By
construction, the reference conformation corresponds to the
global minimum of the energy E.

It would be easy to modify the model so as to incorporate two
elastic constants instead of just one, one for C-alpha atoms adjacent
along the chain (whose distance should always be 3.8 Å) and the
other (softer) for C-alpha atoms close in space. However, this
precaution proved unnecessary in all of the cases described here.

The program used to calculate the normal modes, which are
obtained by diagonalizing the matrix of the second derivatives of
E (the so-called Hessian matrix), was written by Y.-H. Sanej-
ouand. Typically, it takes 2–3 min of cpu on an XP1000 COM-
PAQ workstation for calculating the 100 lowest-frequency nor-
mal modes of a protein of �800 residues. If there are �1,000
residues in the protein, other strategies should be considered,
such as the use of superresidues (15).

For each normal mode l, a set of eigenvectors ui
(l) is obtained

for each eigenvalue; they represent the displacement at every
residue i in the protein for this mode l. To describe a large-
amplitude conformational change of a given protein, we need
only the associated amplitudes cl, which are the parameters to be
adjusted against experimental data. The first six modes (associ-
ated with the same degenerate null eigenvalue) correspond to
global translations and rotations. Refining against only these six
modes will amount to a simple rigid body minimization.

Crystallographic Refinement. In reciprocal space, the structure fac-
tors Fcalc(H) of the modified model with amplitudes cl along the first
Nmod (typically 20) lowest-frequency normal modes, read

Fcalc(H) � �i � 1, Natom exp[2i�H(ri
0 � �l � 1, Nmod ctui

�l�)] .

[2]

To optimize the normal mode amplitudes against experimental
data, the crystallographic residual R-factor is minimized by using
a conjugate-gradient algorithm (21):

R � �H��Fobs(H)� � k�Fcalc(H)�)2��H�Fobs(H)�2 , [3]

where k is a scaling factor that may also incorporate a global
B-factor.

Here, we used the routine ZXCGR, which is also the minimizer
used in CNS (22); the derivatives �R��cl needed by the minimizer
were calculated analytically and checked numerically. Alterna-
tively, one can minimize the score 1 � CC(�Fobs�,�Fcalc�) where

CC��Fobs�,�Fcalc�� �

�H�Fobs(H)��Fcalc(H)����H�Fobs(H)�2�H�Fcalc(H)�2�1�2

. [4]

In this case, the derivatives were calculated numerically only. In
general, we prefer to use the latter criterion because it is scaling
insensitive.

To monitor convergence and assess the effectiveness of the
minimization process, �10% of the reflections were chosen
randomly and subsequently left out of the refinement. The
R-factor for this set of reflections was monitored and called Rfree,
following the definition of Brünger (16) whereas the R-factor
corresponding to reflections being used in the minimization was
called Rwork (note that Rwork and Rfree have a correlation
coefficient counterpart, CC-work and CC-free).

Synthetic Test Structure Factors. For the purpose of testing the
program, a number of structures deformed along the normal
modes directions were generated by randomly choosing the
amplitudes of typically the 10–20 lowest-frequency normal
modes, and the corresponding structure factors were generated
in the appropriate space group.

We found it useful to monitor both the ‘‘mode concentration,’’
called I, as defined by Gerstein and colleagues (5): I �
�	l�1,Nmodc
l ln c
l�ln(Nmod) where c
l � �cl��	l�1,Nmod�cl� are the
normalized absolute values of the amplitudes.

At the end of the refinement, in test cases where the answer
is known, the residual of the mode amplitudes R-mode �
	l�1,Nmod��cl

Refined� � �cl
Target���	l�1,Nmod�cl

Target� was computed.

PDB Test Structure Factors. Two sets of structures were chosen for
validating the refinement procedure, namely citrate synthase
(PDB ID codes 5CSC and 6SCS) and the maltodextrin binding
protein (PDB ID codes 1OMP and 1ANF) in both their open and
closed forms. Experimental observed structure factors are avail-
able from the PDB for the closed forms. Their space groups are
respectively P212121 and P1. Citrate synthase is a dimer of �850
residues whereas the maltodextrin binding protein contains
�370 residues. The overlap between the displacement vectors of
the lowest-frequency normal mode and the difference vectors
between the two forms is 0.83 and 0.86, respectively (6). The
transition between the two forms is best described as a shear
movement and a hinge-bending movement, respectively (5).

For MR tests, the open and closed forms of human polymerase
� (1BPX and 1BPY) were used (335 residues). Structure factors
of 1BPY were retrieved from the PDB (space group P21). The
transition between the two forms is well described by NMA (7).

Envelope. For the envelope test, the envelope map was calculated
from the coordinates of the full atomic model. For every point
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on a grid of size 100 Å � 100 Å � 100 Å and step size 5 Å the
density was set to 1 if its distance to any protein atom was �1.8
Å. The density of all other points was set to 0. Structure factors
of the envelope were obtained up to a 12-Å resolution by using
the CCP4 package (23).

For the minimization, the phased correlation coefficient was
used instead of the correlation coefficient on structure factors
modulus only: in this case, Eq. 4 was replaced by

CC�Fobs,Fcalc� �

�H Fobs(H)Fcalc(H)*���H�Fobs(H)�2�H�Fcalc(H)�2�1�2

,

[5]

where Fcalc(H)* is the complex conjugate of Fcalc(H).
Although it is possible to refine C-alpha models directly, we

found slightly better results in using the set of points on the grid
inside the envelope as the protein elastic network. This proce-
dure ensures that CC is exactly 1.00 for the correct envelope,
allowing maximum contrast between a good and bad fit, and
does not prevent an accurate calculation of the normal modes,
as recently shown by Doruker and Jernigan (24).

Most fitting methods in reconstructed envelopes of macromol-
ecules are based on correlation of model and experimental electron
densities in real space (refs. 25 and 26, but see ref. 27 for a reciprocal
space approach). Here, the refinement is carried out in reciprocal
space with a model that has very few parameters.

Recovering the Final Model. After completion of the refinement
process, the weighted sum of the normal mode displacement
vectors, �ri � 	l�1,Nmodclui

(l) was calculated and applied directly
to the ith C-alpha coordinates of the initial model. For non-C-
alpha atoms, interpolation was needed. We used a spherical
averaging procedure with a weighting factor equal to the inverse
of the mutual distance between the point of interest and points
where the displacement vectors are known, i.e. the C-alphas, and
located �10 Å away.

The resulting model was subjected to 250 cycles of Newton–
Raphson energy minimization in CNS (22), while harmonically
restraining the positions of the C-alphas with a constant of 100
kcal�mol, so as to restore the stereochemistry of the protein chain.
Superpositions of models and rms deviations (rmsd) were calcu-
lated with the McLachlan algorithm (28), as implemented in the
program PROFIT by A. C. R. Martin (www.bioinf.org.uk�software).

In the case of model refinement inside an envelope repre-
sented by a set of lattice points, the interpolation method of
finding the displacement vectors for all of the atoms of the model
was simply a tri-linear interpolation scheme (21).

Results
Refinement Against Synthetic Diffraction Data. The citrate synthase
(ID code 5CSC) was considered first, and structure factors were
calculated for deformed models of the protein obtained by
varying amplitudes of the 10 lowest-frequency normal modes.
These amplitudes were chosen randomly (positive or negative),
and the calculated structure factors became the target structure
factors against which the undistorted model was refined. The
score being minimized was the correlation coefficient on the
structure factors moduli (see Eq. 4). The absolute scale of the
amplitudes was increased from one experiment to the other so
that the total rmsd between the initial and the target model was
increased. In Fig. 1, the percentage of correctly refined models
is plotted as a function of the starting rmsd. There are �50
refined models in each bin of 0.5 Å of rmsd. In this way, we can
evaluate the radius of convergence of the method, namely the
initial rmsd of the model above which the refinements fail in

�50% of the cases. The radius of convergence is around 8 Å, i.e.
close to the resolution of the data used to do the refinement.

Gerstein and colleagues (5) developed the concept of mode
concentration, based on the entropy of the absolute values of the
normalized amplitudes needed to describe a particular conforma-
tional transition. They found that the mode concentration histo-
gram is approximately a Gaussian curve with mean value 0.60 
0.10. By using this concentration quantity as a guide, we asked
whether or not it is easier to refine a starting model if the amplitudes
of the normal modes needed to describe the structural transition are
‘‘concentrated’’ in just a few modes or if they are ‘‘diluted’’?

Different sets of 300–500 models were generated with random
amplitudes of increasing maximum value, with different weight-
ing schemes: 1, 1�l, 1�l3/2 and 1�l2, where l is the mode number.
The corresponding average value for mode concentration is
0.9  0.05, 0.8  0.1, 0.65  0.15, and 0.5  0.2, respectively. In
view of these figures, the distribution of amplitude concentra-
tions observed with the 1�l3/2 weighting scheme seems to follow
closely the one observed in protein movements derived from the
PDB. The refinement program is even better in this case, with
a radius of convergence also equal to the resolution of the data,
but with a much sharper transition (Fig. 1).

In a separate experiment, the ability of the program to
function as a purely rigid-body minimizer was tested. The model
was intentionally rotated and translated by various amounts and
then refined against the structure factors of the unperturbed
model. This time, the radius of convergence of the method was
found to be around 5 Å (see Fig. 2).

Finally, to test the dictum ‘‘when (degrees of) freedom are given,
liberty is taken’’ (29), we generated a model with given amplitudes
along the 10 lowest (non-zero) frequencies and refined the ampli-
tudes of the 26 lowest normal modes, including the six rigid-body
components. The program correctly finished the refinement with
an amplitude of almost zero for the extra degrees of freedom that
were allowed in this experiment, giving a final R-mode � 0.01. In
practical applications (see below), we recommend trying to fit the
data with 10–20 modes in at least two different situations, namely
with or without the six rigid-body modes: the R-free criterion will
determine which refined model is the best.

Refinement Against Real Diffraction Data. The open form of malto-
dextrin binding protein (ID code 1ANF) was subjected to NM
refinement against the experimental structure factors of its closed

Fig. 1. Refinement with respect to the 10 lowest-frequency normal mode
amplitudes: proportion of models refined to better than 0.5 Å, as a function
of the initial rmsd. To investigate the influence of normal mode concentra-
tion, a weighting scheme cl�l3/2 that most closely matches the observed one in
the PDB was also used, showing a much sharper transition around 8 Å.
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form (ID code 1OMP). Only C-alpha coordinates were selected,
and data up to 4 Å resolution were used (�5,500 reflections). Ten
percent of the data were omitted from the refinement to monitor
the R-free. The rmsd between 1ANF and 1OMP C-alpha coordi-
nates is 3.8 Å. Only the five lowest-frequency modes were included.
The results are presented in Table 1.

After conjugate-gradient minimization, the correlation coef-
ficient on structure factors moduli increased from 8.9% (9.7%)
to 30.8% (28.1%) where the values in parenthesis correspond to
CC-free. The rmsd between the refined model and the target
model was 1.14 Å, a considerable improvement from the initial
value (3.8 Å). Displacement vectors corresponding to the five
modes under consideration, weighted by their respective refined
amplitudes, were applied to all atoms according to the procedure
described above. The rmsd of the final full atomic model with the
target model was 1.48 Å, after refinement with CNS to regularize
the stereochemistry. The cpu time of the whole process was �3–5
min even though no special effort was made to speed up the
computation. The same experiment was repeated with the 15
lowest-frequency modes instead of only the lowest 5 ones, and
the refinement converged to the same solution with a final
correlation coefficient of 33% (28%).

As a control experiment, the correct model 1OMP was subjected
to the same refinement protocol. The initial correlation coefficient
was 47% (49%) and was not much modified after completion of the
refinement, reaching 48% (49%). The amplitudes of the normal
modes were very small, and the final model was only 0.18 Å away
from the initial one, meaning that the correct model was not
affected by the refinement, as expected (see Table 1).

The same NM refinement was done on citrate synthase (5CSC
and 6CSC). The rmsd between the open and closed forms is 3.0

Å. Refinement of the control model (6CSC) against its structure
factor moduli gave a refined model only 0.05 Å away from the
initial one and a stable correlation coefficient of 45%. Starting
from the 5CSC, however, and refining against the 6CSC exper-
imental structure factors, the correlation coefficient increased
from 19% (15%) to 40% (39%) in �20 cycles (see Table 1). In
this process, the third lowest-frequency normal mode received
the largest amplitude, as it should (Fig. 3). The rmsd between the
initial and refined model is 2.4 Å whereas the rmsd between the
target and refined model is 1.6 Å.

In comparison, standard protocols of simulated annealing
refinement in dihedral angle space (22) failed to reduce the Rfree
factor, in the same conditions, for both test cases: Rfree remained
stuck at 47.5% and 52.5% for 5CSC and 1ANF, respectively. The
same was true for standard rigid body refinement using CNS.

Because the model moves a lot during the refinement, it might
seem advisable to update the normal mode calculation during
the refinement. To test this idea, we stopped the refinement
every time the model moved by �1.5 Å away from its original
position and recalculated the normal modes before reentering
the minimizer. The program converged to the same solution for
the maltose binding protein and 15 normal modes (data not
shown). The reason for this phenomenon is that the first 15
normal modes of the target model form a very good basis set for
the 15 normal modes of the initial model, and vice versa.

MR Test. The best solution of the translation function for each of
the 25 first peaks of the rotation function implemented in AMORE
(17) was refined by using data between 15 and 4 Å resolution
either by standard rigid-body techniques or by allowing some
extra degrees of freedom in the normal mode directions. In this
case, the amplitudes of the 10 lowest-frequency normal modes

Fig. 2. Refinement with respect to the normal modes associated with null
frequency: rigid-body refinement. The rmsd with the target model of the
refined model is plotted as a function of the rmsd of the starting model. The
refinement was carried out against calculated structure factors at a resolution
of 8 Å. The minimized quantity is the score based on the correlation coefficient
of structure factor moduli defined in Eq. 4, as in Fig. 1.

Table 1. Normal mode refinement against experimental diffraction data

Starting
model

Target
model

Resolution
(Nrefl)

Initial
rmsd, Å

Final
rmsd, Å

Initial CC
(Free-CC)

Final CC
(Free-CC) Nmod

Natom (space
group)

1ANF 1OMP 10 to 4 Å (5,500) 3.8 1.1 8.9 (9.7) 30.8 (28.1) 5 370 (1)
1OMP 1OMP 10 to 4 Å (5,500) 0.0 0.2 47.6 (49.6) 48.2 (49.4) 5 370 (1)
1ANF 1OMP 10 to 4 Å (5,500) 3.8 1.1 8.9 (9.7) 33.2 (28.5) 15 370 (1)
5CSC 5CSC 10 to 4 Å (7,860) 3.0 1.6 19.2 (15.2) 40.0 (39.7) 5 855 (19)
6CSC 6CSC 10 to 4 Å (7,860) 0.0 0.05 49.6 (48.2) 49.8 (48.5) 5 855 (19)

Fig. 3. Projection of the set of displacement vectors, for each low-frequency
normal mode from 1 to 106, onto the set of difference vectors between the
two forms the maltodextrin binding protein (PDB ID codes 1OMP and 1ANF).
In green we show the refined amplitudes, using conjugate-gradient minimi-
zation in reciprocal space against real data.
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were refined together with rigid body degrees of freedom. The
correct solution, which is ranked second after rigid body refine-
ment, is solution no. 5 in Fig. 4. NM refinement clearly identifies
the correct solution by yielding a significantly higher correlation
coefficient than the false positive solution no. 1. Clearly, this
finding seems of real interest to enhance the range of application
of molecular replacement in difficult cases.

Refinement Against Molecular Envelopes. Finally, an envelope was
constructed for the closed form of citrate synthase (6CSC), and
its structure factors were calculated in P1. The open form
envelope was also calculated, and a set of grid points inside the
envelope was used to compute normal modes, whose amplitudes
were refined against the phased correlation coefficient of the
closed form (see Eq. 5). The refinement was done at 12 Å
resolution with �1,200 reflections. A definite improvement of
the fit into the envelope of the closed form was observed with
only five modes whereby the correlation coefficient increased
from 87% to 93% in just a few seconds of cpu time (Fig. 5). The
weighted displacement vectors of the grid points were then used
to move the lattice points inside the envelope as well as the open
form C-alpha coordinates, by using standard linear interpolation
techniques (21). The rmsd of the resulting model with the target
model was reduced from 3.0 to 1.8 Å. Adding more modes did
not improve significantly the final correlation coefficient. The
same refinement was attempted with maltodextrin binding pro-
tein (1OMP and 1ANF), resulting in the same kind of rmsd
reduction, from 3.8 to 1.8 Å.

Discussion
Normal Modes and the Elastic Model. Impressive results were found
for the refinement of structural models against medium- or
low-resolution experimental data in reciprocal space, by using as
sole parameters the amplitudes of a small set of low-frequency
normal modes derived from a simple one-parameter elastic
model of the protein. It is clear that normal mode refinement has
a larger radius of convergence than classical rigid-body refine-
ment (compare Figs. 1 and 2).

This finding might seem counterintuitive at first sight. In fact,
it is just a consequence of the model described by Eq. 1 where
low-frequency normal modes do enforce collective large-
amplitude movements. Because the model contains very few
parameters and is exactly accounted for in Eqs. 1 and 2, it is

perhaps not so surprising that a relatively simple but robust
conjugate-gradient minimizer can find the correct solution in
very little cpu time.

The real question, therefore, is how well the model encoded in
Eq. 1 describes biologically relevant large-amplitude movements of
macromolecules. Loop movements and refolding events are likely
to be poorly described by low-frequency normal modes.

Fortunately, it is possible here to invoke the systematic study
of Gerstein and colleagues (5), who showed that a large pro-
portion of protein movements documented in the PDB are
indeed well described for the same protein in different environ-
ments (crystal packing, substrates, etc.), by just a few normal
modes calculated by using the model represented by Eq. 1. This
finding is complemented by a number of studies on specific
systems (7–10). Also, a fortunate feature of the analysis in ref. 5
is that models with a mode concentration reproducing the one
observed in the PDB refine even better than expected.

Limitations of the Model. At first sight, it might seem that a severe
limitation of the method comes from the use of a highly partial
model of the final structure, namely only the C-alpha coordinates
are used both in the normal mode calculation and in the
refinement process. However, several authors have argued con-
vincingly that NM derived from C-alphas only (and not from the
full atomic model) work well (5, 6). Two separate questions
remain to be addressed.

First, the score for the correct model cannot be perfect if the
model is partial, so the contrast between the correct answer and
the starting model is not maximum, i.e., as large as it could be
if the model were complete. However, we show here that this
contrast is good enough to lead to a satisfactory refinement of
NM amplitudes using real experimental data (see above).

Second, how can one generate the complete atomic model from

Fig. 4. Correlation coefficient of the top solution of the translation function
for the 25 best solutions of the rotation function of the 1BPX model against
1BPY crystallographic data between 15 and 4.5 Å resolution. The true solution
is solution 5; it is ranked first after NM refinement, but only second after
rigid-body refinement.

Fig. 5. Envelope of the maltodextrin binding protein in the closed form
together with the set of grid points inside the envelope (Lower). Envelope of
the open form with the final set of refined points using the 10 lowest-
frequency normal modes (Upper).

Delarue and Dumas PNAS � May 4, 2004 � vol. 101 � no. 18 � 6961

BI
O

PH
YS

IC
S



the refined C-alpha coordinates? Here, we use techniques derived
from homology modeling. There are actually at least two possibil-
ities. The first one is to reconstruct all main chain atoms from
C-alpha only, using fragments of the PDB database (30) as, for
instance, implemented in the lego�auto�mc option in O (31) and
then build side chains by using, e.g., mean-field techniques (32).

The second one is to interpolate displacement vectors at every
atom position and then regularize the stereochemistry of the
chain by using any molecular dynamics force field. We chose the
second method with excellent results.

Fitting Models into Envelopes. It might seem that the approxima-
tion used here (to represent as a set of lattice points the model
to be refined into a given experimental envelope) is a very gross
one. However, it was shown recently that normal modes derived
from such an approximation still correlate well with the ones
derived, for instance, from a C-alpha model (24). Obviously
there are other, and probably better, ways to represent the
starting envelope, such as sets of points derived by more
sophisticated neural-network techniques and Voronoi centroids
(33–35). However, this method has the advantage of both
simplicity and accuracy in the calculation of structure factors of
the target envelope. It proved very easy to interpolate the field
of displacement vectors back to the C-alpha coordinates, thus
generating the atomic model in a matter of seconds of cpu time.
Also, we find this visualization of the field of displacement
vectors on a regular lattice very appealing for further analysis
using graphics programs such as O (31).

For small-angle x-ray scattering data, the fitting could be done
either in envelopes reconstructed from the experimental data (36,
37), or directly in reciprocal space, because the method presented
here expresses the constraints in reciprocal space anyway. Further
work is needed to assess which of the two methods is best.

Application to the MR Method. Highly partial models such as
C-alphas-only models can be used and refined in MR techniques,
as documented elsewhere (38, 39). The NM refinement program
described here was successfully used to discriminate between
alternative solutions of the MR problem, in a manner reminis-
cent of the Patterson-correlation-refinement method (40).

On a more general level, once the correct solution of MR has
been identified, there is a definite need to start from the best
possible model. This is because it is very difficult to get rid of
errors in the initial model, which propagate during the refine-
ment through phase combination. Even though phase combina-
tion methods have been improved (41, 42) and the Rfree factor

(16) allows for a better (safer) refinement process, there is still
a definite advantage in refining early on (i.e., at low resolution)
the molecular form of the model in the best possible way. NM
refinement allows for such a possibility in cases where large-
amplitude collective movements occur and where dihedral angle
dynamics fail.

NM refinement is better than rigid-body refinement because
there is no need for the user to define the movable domains, which
are found by NMA. For shear movements as in citrate synthase, this
feature is a definite improvement on existing methods because the
movable domains are very hard to define by visual inspection. And,
indeed, to explore large-amplitude rearrangements of the molecule,
it seems natural to explore first the ‘‘most natural movements’’ of
the protein, which are given by a linear combination of the
lowest-frequency normal modes-associated directions.

Conclusion and Perspectives
In summary, we have shown here that refinement in reciprocal
space at medium or low resolution with respect to NM ampli-
tudes is very efficient, with a very large radius of convergence
that goes beyond the capacities of pure rigid-body refinement
and also of dihedral angle refinement. There is no danger of
overfitting the data because the number of parameters is very
small; in addition, the Rfree indicator can be used to ensure that
overfitting is not taking place. We checked in test cases that,
when extra degrees of freedom are allowed, they refine correctly
to almost zero amplitude. With real data, NM refinement
proceeded correctly even though the model contains only one
atom per residue.

Envelope refinement was made possible through the use of a
lattice points approximation of the envelope, from which it was
possible to interpolate the deformations of C-alpha coordinates
of the molecule. Alternatively, C-alphas models can also be
refined directly. We expect that the extraction of the normal
modes amplitudes best fitting a molecular envelope change upon
ligand binding should be extremely useful in the quickly expand-
ing field of structural studies of large macromolecular biological
complexes and�or molecular motors (43).
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